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I Abstract:

In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed
Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to
ob(ain the cascade correlation learning algorithm by choosing a particular set of parameters.
Furthemlore,  CEP learning algorithm is operated only on one layer, whereas the other set of weights can
be calculated deterministically.  In association wilh the dynamical stepsize change concept to convert the
weight update from infinite space into a finite space, the relation between the current stepsize and the
previous energy level is also given and the estimation procedure for optimal stepsize  is used for
validation of our proposed technique.

The weight values of zero are used for starting the learning for every layer, and a single
hidden unit is applied instead of using a pool of candidate hidden units as in the cascade correlation
scheme. Therefore, simplicity in hardware implementation is also obtained. Furthemwre,  this analysis
allows us to select jiom other methods (such as the conjugate gradient descent or the Newton’s second
order) one of which will be a good candidate for the learning technique. The choice of learning
technique depends on the constraints of the problem (e.g., speed, petiorrnance,  and hardware
implementation); one technique may be more suitable than others. Moreover, for a discrete weight
space, the theoretical analysis presents the capability of learning with limited weight quantization.
Finally, 5- to 8-bit parity problems are investigated; the simulation results demonstrate that only three
hidden units are required to learn a 5-bit parity problem pe~ectly  and to learn a 6-bit parity with just
one pattern error. Four hidden units are suficient  for a 7-bit parity problem with no error and for an
tl-bit  parity problem with one pattern error. We have restricted the learning to a jixed 100 epoch
iterations for each single-layer perception (each single hidden unit) learning. In addition, with 3- to 4-
bit weight resolution, it is demonstrated that this technique is capable of learning reliably 5- to 8-bit
parity problems by incorporating additional hidden units (up to a maximum of 20).

I Introduction
There are many ill-defined problems in pattern recognition, classification, vision,

and speech recognition which need to be solved in real time [1-3]. One of the most
attractive features of the neural network is a massively parallel processing topology that
offers tremendous speed specially when implemented in hardware. Generally, neti
network approaches in hardware face two main obstacles:
(1) dfilcuhy  of network convergence due to the learning algorithm itself as well as
the limited precision of the devices;
(2) high cost of implementing hardware to truly mimic the synapse and neuron
transfer functions dictated by the algorithm.
Furthermore, the convergence and the implementable hardware have a mutual
correlation to each otheq for example, the convergence of the learning network depends
on the weight nxolution  available in synapse [4-6], and the cost of implementation of
each bit in synapse grows, at least doubly, in silicon area, power, and connectivity [7-8]
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In this paper, CEP learning algorithm is presented. It offers a simple learning
method using a one-layer perception approach and a deterministic calculation for the
other layer. Such a simple procedure offers a fast, reliable, and hardware implementable
learning algorithm. To validate the new learning theory of CEP, simulations for 5- to 8-
bit parity problems are investigated in weight quant.ization of a floating point machine
(32-bit for float and 64-bit for double precision) and limited weight quantizations  (3- to
6-bit weight resolution) of VLSI hardware.

II Cascade Error Projection: Mathematical Foundation

We describe the new learning architecture along with its mathematical foundation.
The architecture consists of two sub-networks: one uses perception learning (master
network) and the other uses deterministic calculations (slave network). The architecture
starts out as a single layer perception and adds hidden units when needed, one after
another.

Assume that the network contains n hidden units (see Fig. 1) and the learning
cannot be improved any further in the energy level. At this point, a new hidden unit (n+l)
is added to the network.
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Figure 1: Schematic diagram for CEP learning with a newly added
hidden unit (n+l). Blank circles and squares are the weigh[ components
that are determined by iterative learning and calculation, respectively.

N is the dimension of the irrput space, n+l is the dimension of the expanded input space
(n+l is dynamically changed and is based on the learning requirement), and m is the
dimension of the output space, P is the number of training patterns. Finally, j is a
sigmoidal  transfer function which is defined by:

f(x) = p;

Other notations are defined as follows:
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target r and the
network.
f’ ~ (n) denotes

denotes the error for an output index ~ and training pattern p between

actual output o(n). n indicates the output with n hidden units in the

the output transfer function derivative with respect to its input index ~
and the training pattern p.

fj (~ + 1) denotes the tmnsfer  function of hidden unit n+l for a training pattern p.

Xp denotes the input pattern p.

The energy function is defined as follows:

E(i) =~w(o =~~(t: -+(0)2 =jj’jjw
p+ p=l 0=1 p=l 0=1

The difference of energy between the network with n hidden units and the network with
n+ 1 hidden units can be obtained as,

0=1 p=l p=l

where wkfhp (n + 1) is small. This assumption is needed for nonlinear transformation
function only.
As proved in ref. 9, the maximum energy reduction between hidden unit n and a newly
added hidden unit n+] with respected to Wb is:

S%f ‘: f:(n+l)

max{(m)wb} = jj~{8:f ’: fhp(n+l)} when Wh = ~— (1)
p=l 0=1 ~[f ‘: f:(n+l)l’

p=l

Let

r =

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
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Fh(n+l)=

f; (n + 1)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

-f~(n + 1

We can rewrite equation (1) using a matrix notation as follows:
AE = mrTF, (n + 1) (2)

From (1) and (2), the energy reduction is dependent on a match between r and Fh (n + 1).

The technique to match r with Fh (n + 1) can include, e.g. perception learning with
gradient descent, maximum correlation or covariance  with gradient ascen4  conjugate
gradlen~  and Newton’s second order method. Therefore, the learning network
performance really depends on the learning technique chosen for matching the error
surface r and F~ (n + 1), In equation (2), let ~ ~ (n)= 1; then it can be rewritten as:

AE =j’{fi(n+l)+~(~~  -~~(n))} (3)
0—

If we maximix AE in equation (3) by using the maximum correlation or covariance
technique, then the learning algorithm is identical to that of Cascade Correlation. Thus a
strong mathematical basis has been established for the algorithm as originally repotid  in
ref. 10.

III Cascade Error Projection Learning Algorithm

a) Learninz  aup roach:

The new energy function is defined as:

The weight updates between the inputs (including the weights by expanded inputs) and the
newly added hidden unit is calculated as follows:

Aw~ (n + 1) = –V
iXD(n  + 1)

&v~ (n + 1)

and the updated weight value for the
unit o can be calculated by,

D

synapse between the hidden unit h and the output
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b) $imulution

1) Problem.y;

Using this technique, we have solved, 5- to 8-bit parity problems with (1) no limited
weight quantization  (floating point 32-bit for single. precision and 64-bit for double
precision); and (2) the limited weight quantization from 3-to 6-bits.

2) Parameter$

The learning rate q is used and is set to decrease linearly as: ?I _ = q .U –.01 *q ~ ,where

qO = initial learning rate.
For our simulation, the parameter values of table I are

Table I: Values of initial learning rate and a used in simulation for different parity
problems and bit-resolution of synapses.

6-bit parity 7-bit uani ~
Fhatin&Doint qo=l.o qo =1.0 Ilo =0.4 qo =0.4
math ine Weight a =NIA a =NIA a =NIA a =NIA
3-bit Wei~h@ 11*=1.o; ‘qIy =1.0; ?l(l  = 1.0; ’110 = 1.0;

a =.0024810 a =.016597 a =.008766 a =.004101

4-bit Weiph@ q*=L(k qo = 1.0; ‘qO = 1.0; Ilo=l.o;
a =.0016467 a = .010&f8 a =.008218

5-bit Wekhts
a =.004101

qo=l.o ql)=l.cl Ilo=l.o; qo = 1.0:
a =.0016467 a =.010&58 a =.008163 a =.004217

6-bit Weiphts ‘qO = 1.0; qo =1.0; qo =1.0; qo=l.ck
a =.0016467 a =. O1O8S8 a =.008163 a =.004217

3) conversion  techniaue (round-ofl  technique)

In continuous weight space, the weight quantization  can be considered as
infinite. However, in hardware, weight quantization  is always finite and limited
Therefore, it is necessary to convert the weight updates Aw to a finite weight
quantization  Aw*. As proved in ref. 9, learning can be done with limited weight
quantization  as long as the difference between Aw and Aw* is viewed as equivalent
independent white noise (round-off conversion technique) and the stepsize which is used
to convert from Aw to Aw* must not be f~ed. The dynamical stepsize can be roughly
estimated as follows:
In continuous space, the energy reduction is:

AE = ~~c~~’;  j’~(n+l)
p=l 0=1
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During learning, limited weight quantization  value, Aw* directly affects the output of the
(n+l)” hidden unit f~ (n+ 1). It is expressed as:

N+l

~j (~ + O = f; (~ fi~i + ~ fix, (j)), W is a weight component in finite weight  space.
;=l j=l

The reduction of energy in discrete (finite) weight space [9]is:

p=l 0=1

Our main focus is finding the conversion factor (stepsize)
(e.g. previous energy E(n)). ‘Ilk will lead to an estimation
hence, enhanced learning with limited weight quantization.

(5)

based on known parameters
of the conversion factor, and

(6)
Ignoring the nonlinear characteristic, it is roughly estimated that:

3/ (n + 1) cc fi K stepsize(n  + 1) (7)
From (5), (6), and (7) one can express

stepsize(n  + 1) = E(n) (8)
The expression in (8) is a critical step in estimating the dynarnicd  stepsize which is
dependent on the p~vious  energy of the network. In other words, the expression can be
written as:

stepsize(n  + 1) = &(n)

The value of et can be obtained for each application through  simulation (e.g. Table 1)
The weight update Aw is converted into the equivalent available weight quarttization
Aw*. The conversion can be summarized as follows:

<
‘ j *  (4 AwP(n)

stepsize(n)  * int(
ste~.~~(n)  +  05) y ‘——

+  i n t ( —  - - + 0.5))< 2~mf Awjh(n)  >0
steps ize(n) sfepsize(n)

Awj, (n) ‘j~ (n) Awj, (n)
Aw~(n) = ~ stepsize(n)  * int( -  05) y (—— + int(—-–– 0.5)) S -2Band  Awj,  (n) c O

sfepsize(n) slepsize(n) sfepsize(n)
o Otherwise

1

4) $imulation  results:

As noted earlier, we are solving 5-,6-,7-, and 8-bit parity problem with different synaptic
resolution. We compare the results of higher and lower synaptic resolution to show the
robustness of such an algorithm for hardware implementation. The input and output highs
are 0.8, and the lows are -0.8. The neuron transformation function is a hyperbolic tangent
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function. Zero values are used for the initial weights of each newly added hidden  uni~
therefore, it is not needed to conduct extra runs for each problem. A 100 epoch iterations
learning is applied to each hidden unit for the weight between the input and the current
hidden unit only.

N #of hidden
units

Figure 2:
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3- 4- + 6- 64-
bit bit bit bit bit
w w w w w

N #of bit rasolutlon synapsa

The chart shows CEP learning capability and the number of
hidden units required to correctly solve 5- to 8-bit parity problems using
round-off technique. x axis represents weight qurmtizaticms (3-6 and
64-bit) and y axis shows the resulting number of hidden units (limited
to 20). Each hidden unit learning is provided with 100 epoch iterations.
As shown, a lager number of hidden units compensate for the lower
weight resolution.

TabIe  II: The number of iterations required for a single perception learning for different parity
problems to obtain the convt-rgence.

5-bit parltv 6-bit parvty I - It arlt

7b-D-y3

- It arlt
3-bit  weit?hts 700 epochs 1200 epochs 900 epochs *
4-bit weir?hts 300 epochs 500 epochs 600 epochs 1200 e ochs
5-bit weights 300 epochs 400 epochs 400 epochs 1100 e ochs
6-bit weights 300 epochs 400 epochs 400 epochs 700 e ochs
64-bit wei~hts 300 epochs 400 epochs 400 epochs 600 epochs

* Did not converge completely within  the 20 hidden units limit. The percentage error was 136% after a
total of 1600 epochs of learning iterations.

IV. Conclusions

In this paper, we have shown that CEP
hardware-based neural network learning.

is a reliable technique for both software- and
From this analysis, it is shown that the CC

algorithm is a
Moreover, the

special case and can be understood in greater depth with this analysis.
theoretical analysis provides us with the general framework of the learning
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architecture, and the particular learning algorithm can be independently studied for its
suitability for a given application associated with given constraints specific to each
problem. For example, for hardware implementation CEP is advantageous, but for
software, covariance or Newton’s second order method is more advantageous). For the
CEP learning algorithm, the advantages can be summarized as follows:
● A fast and reliable learning technique
. An easy implementation in hardware
● A low weight resolution requirement in weight space
● A robust model in learning neural networks
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